

Energy Demand Reduction for FSU's Central Utility Plant

Group members: Edgardo Cordero, Alec Schoengrund, Steven Decker, Mira Meyers, Keaton Zargham, and Juan Villalobos

Team 521 Introductions

Juan Villalobos Energy Auditor

Keaton Zargham Data Analyst

Alec Schoengrund Mechanical Design Engineer

Edgardo Cordero Project Manager

Mira Meyers Quality Control Engineer

Steven Decker HVAC Engineer

Juan Villalobos

Sponsor and Advisor

Engineering Mentor Cameron Griffith Solutions Advisor, LEED AP, CEM, CDSM <u>Academic Advisor</u> Dr. Juan Ordonez, Ph.D. Professor of Thermodynamic Optimization for Advanced Energy Systems

Juan Villalobos

Objective

To research, study, evaluate, and propose a project that reduces FSU Facility's Electric Utility bill by reducing peak demand and/or the overall electric consumption to generate a financial payback to FSU.

Juan Villalobos

FSU Energy Overview

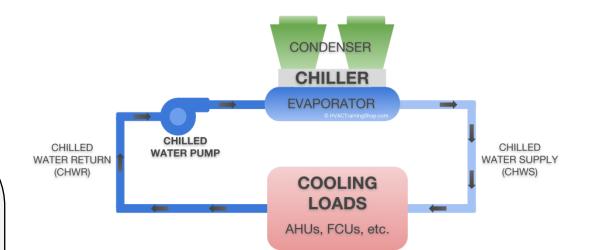
Average Monthly Energy Usage (2019):

- Consumption (kWh).....13,500,000
- Demand (kW)..... **24,500**

Electric Utility Rate Structure (2019):

- Demand (\$/kW).....**11.32**

Average Monthly Energy Bill (2019):


- - Demand (\$)..... **280,000**

Juan Villalobos

HVAC System

- Over 50% of energy spend is from heating, ventilation, and cooling systems on campus
- FSU relies on **21** chillers to cool campus buildings
- Chillers produce cold water that is pumped around campus to air handling units to supply cold air to buildings
- The compressors of the chillers, as well as the fans and pumps consume large amounts of electricity to operate

Juan Villalobos

HVAC System

- Capacity of AC units are measured in Tons
- The 6 chillers in the Central Utility Plant are 1,200 tons each
- Typical load on the CUP during a hot summer day is between 2,990 and 4,660 tons
- Current operating efficiency of the CUP is 0.69 [kW/ton] •

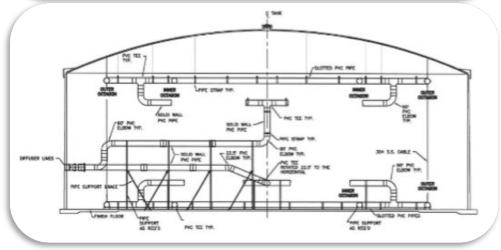
Calculating Demand Charge

• 4,660 [tons] * 0.69 [kW/ton] = 3,215 [kW] * 11.32 [\$/kW] = \$36,400

Calculating Consumption Charge

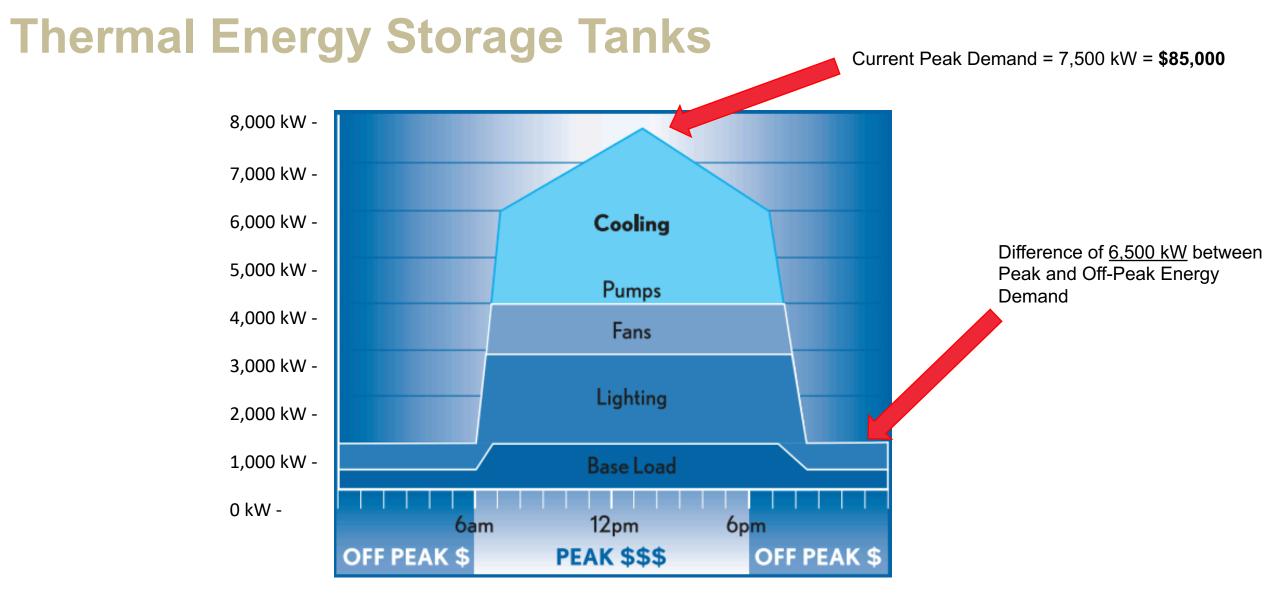
3,850 [avg tons] * 0.69 [kW/ton] * 720 [hours] = 1,900,000 [kWh] * 0.049 [\$/kWh] = **\$93,700**

Juan Villalobos

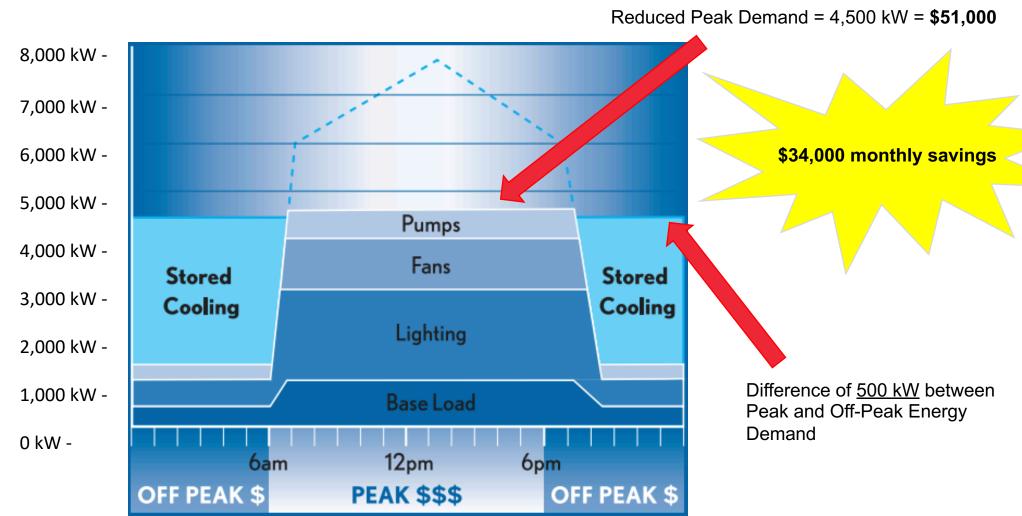


Demand Reduction Solution

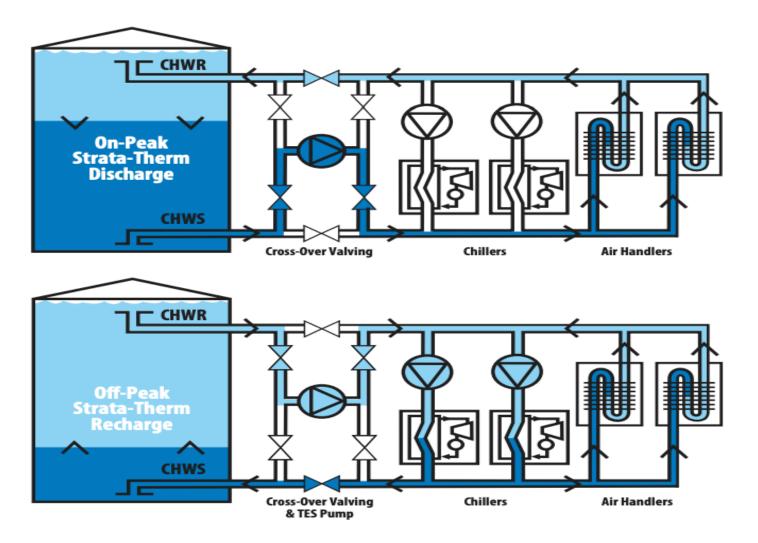
- Reduces energy costs by lowering the peak electric demand during the day
- Reduces energy consumption by shifting operation time to nighttime which improves efficiency of chillers
- Allows the campus to keep up with increasing cooling loads without adding a new chiller
- Provides additional redundancy for the campus in case of an equipment failure


Thermal Energy Storage (TES) Tank

Juan Villalobos



Alec Schoengrund


Thermal Energy Storage Tanks

Alec Schoengrund

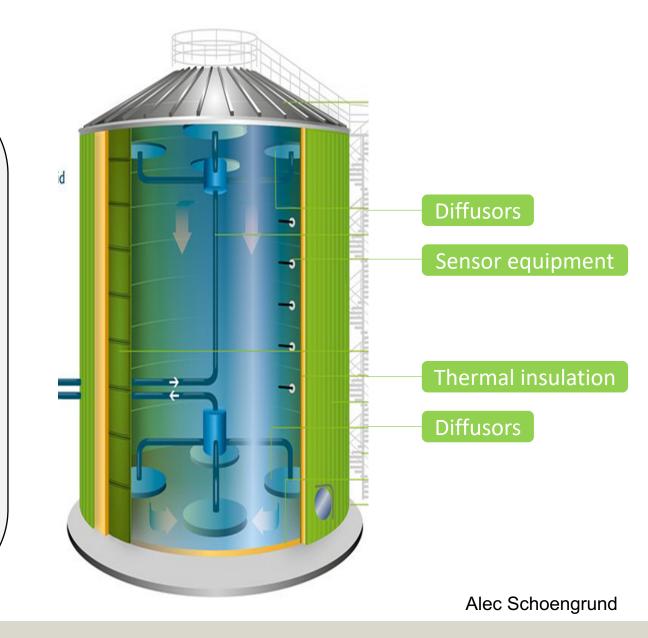
Thermal Energy Storage Tanks

Alec Schoengrund

Tank Composition

Stratified TES main structure

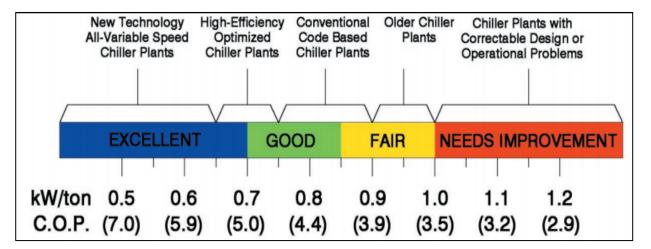
• Steel, concrete, and plastic

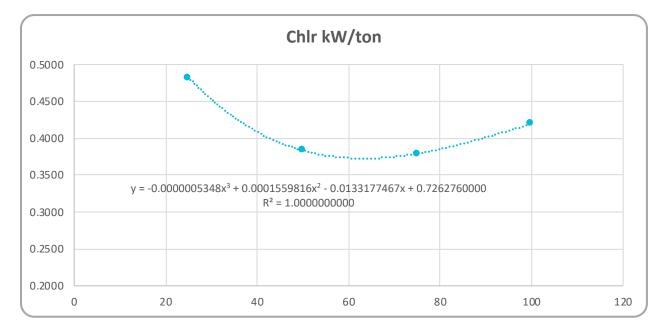

Diffusers

- Warm and chilled water enter and exit the tank through diffusers
- Coated steel piping
- Key to thermocline
- Spreads radially to reduce heat transfer between the hot and cold bodies of water.

Insulation Material

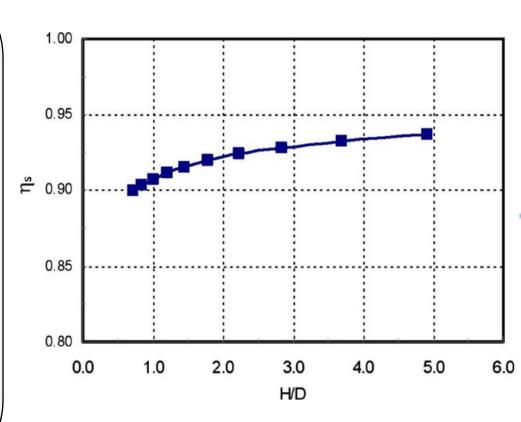
- Polyurethane foam, mineral, wool
- Assists with maintaining temperature


Service life: > 50 years



Tank Efficiency

- Thermal efficiency is 90%
- Dependent on stratification, thermocline, and insulation
- Insulation Methods
 - 1. Spray on polyurethane foam
 - 2. Injecting insulation between structural layers
 - 3. Mineral wool, fiber glass, or ceramic fiber used as external wrap.
- Running the chillers at night when the ambient temperature is lower will improve the Chillers' efficiency



Alec Schoengrund

Tank Sizing

- 7,300 [gpm] flow rate of CUP * 8-hour cycle = 3.5M Gallons required
- Larger height is more efficient
- Environment constrains the diameter more than the height
- 100 ft of available space behind the C.U.P
- Height would have to be 51 feet (a little less than a 4-story building)
- System schematics and energy balance is currently being researched to provide accurate dimensions and validation for the tank.
- Most efficient TES Tank would be 50 ft wide and 250 ft tall
- We will be more practical; our tank will be 100 ft wide and 50 ft tall

Alec Schoengrund

Project Comparison

UCF

6,000,000 [\$] Project Cost 3M [gal] Tank Size: 26,200 [ton-hours] Cooling Capacity: 8,300 [gpm] Chilled Water Flow Rate: 3,000 [kW] Peak Electric Load Reduction: Demand Rate: 9.50 [\$/kW] On-Peak Consumption Rate: 7.002 [¢/kWh] Off-Peak Consumption Rate: 5.170 [¢/kWh] Annual Savings: 700,000 [\$] **Demand Charge Savings:** 340,000 [\$] **Consumption Charge Savings:** 360,000 [\$]

•

- Project Cost:
- Tank Size:
- Cooling Capacity: **30,800 [ton-hours]**
- Chilled Water Flow Rate:
- Peak Electric Load Reduction:
- Demand Rate:
- Flat Consumption Rate:
- Annual Projected Savings:
 - Demand Charge Savings:

7,366 [gpm] 3,215 [kW] 11.32 [\$/kW] 4.9 [¢/kWh] 400,000 [\$] 350,000 [\$]

6,470,000 [\$]

3.5M [gal]

Mira Meyers

Project Logistics

Mira Meyers

Departments of Mechanical, Industrial, and Electrical Engineering

Project Financials

- \$6.5M Total Project Cost / \$400,000 Annual Savings = 16-year ROI
 - Study from Texas A&M supports the team's sizing and assumptions

Tank (M gal)	bil	Annual lling cost vings (\$)	Annual cost savings percentage	en	Annual ergy cost vings (\$)	de	Annual mand cost avings (\$)	Total elec. consumption reduction (kWh)	Demand reduction (kW)	Annual cooling increase (ton-hr)
1.0	\$	471,298	10.1%	\$	223,536	\$	247,762	2,863,909	2059	6,007,818
2.0	\$	627,097	13.5%	\$	240,909	\$	386,188	2,688,822	3127	6,051,099
3.0	\$	798,285	17.1%	\$	256,078	\$	542,207	2,478,769	4345	6,094,219
3.5	\$	907,231	19.5%	\$	264,109	\$	643,121	2,377,427	5036	6,114,129
4.0	\$	912,437	19.6%	\$	269,598	\$	642,838	2,326,156	5036	6,123,930
5.0	\$	922,487	19.8%	\$	280,153	\$	642,335	2,211,959	5036	6,144,385
6.0	\$	932,876	20.0%	\$	290,422	\$	642,454	2,095,404	5036	6,164,696
7.0	\$	940,319	20.2%	\$	297,746	\$	642,573	2,008,835	5036	6,180,300

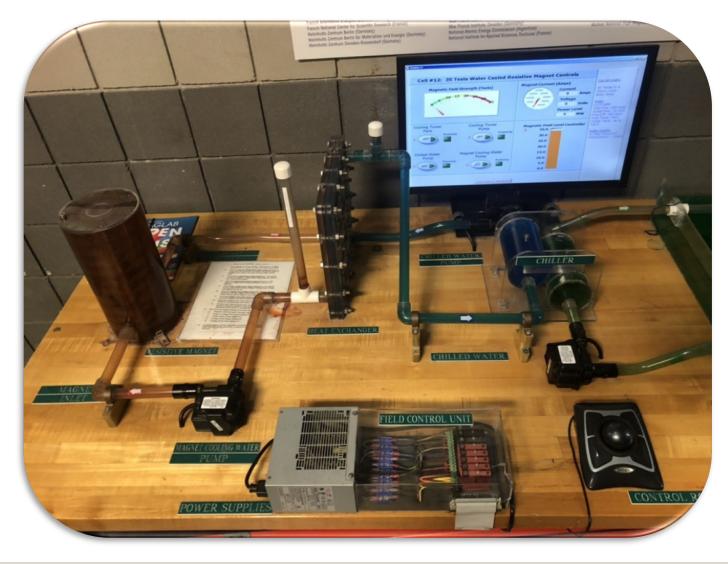
Mira Meyers

Budget F	Report
----------	--------

	Product	Quantity	Cost
	Arduino	1	\$18
	Arduino cable	1	\$6
	8 Channel Relay Module	2	\$20
	Breadboard Jumper Wires	1	\$7
	LED Light Strip	1	\$20
	LCD Counter Displays	4	\$40
	6-pack of LED Lightbulbs	2	\$20
	6-pack of E26 Sockets	2	\$27

Mira Meyers

Budget: \$2000


• Spent: \$0

٠

- Budget will be used for our Engineering day demonstration
- Projected total cost: \$158.00

Demonstration

- Current system demonstration present at the National High Magnetic Field Laboratory
- The team will attempt to create

 a demonstration that resembles
 their system but redesigned to
 our needs

Mira Meyers

Departments of Mechanical, Industrial, and Electrical Engineering

Conclusion

- FSU spends more than 20 million per year on electric utilities (Over 50% is from HVAC)
- Thermal energy storage reduces cost by running chillers at night when electricity is cheaper
- Implementation of tank would cost \$6.5M and provide an annual savings of \$400,000 with an ROI of 16 years
- UCF is currently working towards a 2nd TES Tank project because of the success they have had with 1st Tank

Mira Meyers

Questions?

<u>Team Members:</u>	<u>Email:</u>
Edgardo Cordero	edc15@my.fsu.edu
Steven Decker	sd16b@my.fsu.edu
Alec Schoengrund	abs16d@my.fsu.edu
Mira Meyers	mam15x@my.fsu.edu
Keaton Zargham	ksz17@my.fsu.edu
Juan Villalobos	jjv15b@my.fsu.edu

References

- Lew, J. T. V. (n.d.). Effect of the ratio of tank height/diameter on the thermal storage efficiency. Retrieved March 2, 2020, from https://www.researchgate.net/figure/Effect-of-the-ratio-of-tank-height-diameter-on-the-thermal-storage-efficiency-while_fig10_267154195
- Zhang, Z., Turner, W. D., Chen, Q., Xu, C., & Deng, S. (2011). Tank size and operating strategy optimization of a stratified chilled water storage system. *Applied Thermal Engineering*, 31(14-15), 2656–2664. doi: 10.1016/j.applthermaleng.2011.04.035
- Energy Efficiency On Demand DN Tanks. (n.d.). Retrieved March 2, 2020, from https://dntanks.com/wp-content/uploads/2016/07/DNTanks-TES-Brochure-2013.pdf
- Strata-Therm® Stratified Water Thermal Energy Storage McDermott Engineering retrieved February 26, 2020 <u>https://www.mcdermott.com/getmedia/9c1b9e3f-b58b-47b9-97b0-44c5b7398a44/Strata-Therm-v9-3-digital.aspx</u>
- Lower Cooling Cost. (n.d.). Retrieved February 26, 2020, from http://www.calmac.com/lower-cooling-costs
- Hartman, T. (201AD). All-Variable Speed Centrifugal Chiller Plants. ASHRAE JOURNAL, 43–51. Retrieved from <u>https://triangleashrae.com/images/meeting/111616/Meeting_Presentations/all_variable_speed_centrifugal_chiller_plants_journal_2001_09_thomas_hartman_.pdf</u>